Just-In-Time Databases and the World-Wide Web

Ellen Spertus

Mills College
5000 MacArthur Blvd.
Oakland, CA 94613 USA
+1 510-430-2011

spertus@mills.edu

Lynn Andrea Stein

MIT AI Lab
545 Technology Square
Cambridge, MA 02139 USA
+1 617-253-2663

las@ai.mit.edu

1. ABSTRACT

It is not always possible or practical to store very large data sets in a relational database. For example, in a rapidly changing large-scale environment with distributed control, such as the World-Wide Web, a strict relational approach is not feasible. Nevertheless, it is desirable for a user to be able to make SQL queries on the entire data set, because SQL is well known, supported, and understood. We introduce “Just-In-Time Databases”, which allow the user to query the entire data set as though it were in a relational database. The underlying engine brings data into the relational database only when it is required by user queries. We describe how “Just-In-Time Databases” are implemented, using the World-Wide Web as an example.

1.1 Keywords

Semi-structured information, Web, relational databases, SQL, federated databases, Internet

2. INTRODUCTION

2.1 Motivation

With the rise of federated databases comes the need to query very large, heterogeneous, distributed sets of read-only documents. Relational databases provide a powerful abstraction for manipulating data. The division of data into relations helps users comprehend the data and allows them to specify queries in Structured Query Language (SQL). This need to structure information is greatest when a data set is very large; however, traditional database management systems require that the entire data set be stored in a relational database, which is not always possible.

Although not usually classified as such, the World-Wide Web can be seen as a federated database. Specifically, it is a very large distributed collection of documents, composed of a number of different types of semi-structured information. Because of the Web’s size, dispersion, and flux, it would be impossible to store the entire Web in a relational database.

We introduce “Just-In-Time Databases”, which provide the user with the illusion that an entire massive data set is in a local relational database. In reality, data is retrieved or computed only as needed. This allows the benefits of the relational database model to be obtained even when it is impractical or impossible to actually store all the data in a relational database. We provide algorithms for implementing Just-In-Time Databases, using the Web as an example.

2.2 Overview

A Just-In-Time Database specification consists of:

· a relational database schema, which is first used to define tables in an underlying locally-stored traditional relational database management system (RDBMS)

· a set of functions for instantiating complete table rows, given values for a subset of columns

When the user issues a query on a JIT database, the JIT interpreter does the following:

1. Determines what data must be filled into the local database in order to answer the query, computing and inserting the data if it is not already present.

2. Passes the original query to the underlying RDBMS, returning the answer to the user.

The effect of the JIT interpreter is to provide the user with the illusion that the entire data set is stored in the relational database. In actuality, the relational database serves as a cache on the data set, containing only the data needed to answer queries that have been made.

The next section contains definitions useful for describing the behavior of the system more precisely, followed by the algorithms used to determine what information must be inserted into the actual relational database. We then discuss a JIT database for the Web. We then conclude with a discussion of the significance of this work and its relation to other research.

3. DEFINITIONS

3.1 Defining columns

A table in a relational database consists of a set of columns. We call a column c a defining column if an executable function exists that maps any value of c to all sets of legal values for the other columns. This function may not refer to the table itself (e.g., do “select” queries).

For example, if a table squares contains two columns, base and square, representing an integer and its square, respectively, both columns would be defining columns. (Squares and other tables used in this section are shown in Figure 1. Throughout this paper, table names appear in small caps, column names in bold face, and function names in italics.) If the value of base is known, the legal value for square can be easily computed. If the value of square is known, the legal associated values for base can be computed. If square is zero, there will be precisely one legal value for base: zero. If square is the square of any other integer, there will be two legal values for base, the positive and negative square roots. If square is not the square of an integer, there will be no legal values for base. In any case, knowing the value of either column determines the legal values for the other column.

On the other hand, a table election (Figure 1) whose two columns voter or ballot would have no defining columns if it described a secret ballot. Knowing the identity of a voter or the contents of a ballot would not allow determination of the other column value.

3.2 Fetch

We define an imperative operator fetch that, when given the values of one or more defining columns, augments a table by adding all legal relations having the given values. The syntax of the basic form of fetch is:

fetch tableName(col0=value0, … colN = valueN)

where tableName is the name of a table, cole0 through colN are defining columns, and value0 through valueN are, respectively, legal values. For example, consider the following instance:

fetch squares(base=4)

which would add the relation {base=4, square=16} to table squares, unless it was already present. It is permissible that, as a side effect, additional relations may be added to squares or other tables.

 Squares

 Election

Primes

base
square

voter
ballot

prime

0
0

Alice
yes

2

-1
1

Bob
no

3

1
1

Carol
yes

5

-2
4

David
yes

7

Figure 1: Tables squares, election, and primes, used as examples
fetchStatement
=
“fetch” <tableName> “(” fetchList “)”

(“from ” <tableList>

 (“where ” logicExpression)?

 (“group by ” columnList)?

 (“having ” logicExpression)?)?

fetchList
=
namedArgument (“, ” namedArgument)*

namedArgument
=
<columnName> “=” fetchExpression

fetchExpression
=

|

|
expression “|” expression

expression “&” expression

expression

Figure 2: The grammar for fetch statements. Nonterminals tableList, logicExpression, columnList, orderList, and expression are defined elsewhere [15] and have the same meanings as the corresponding SQL nonterminals.

The full syntax for the fetch statement is shown in Figure 2. An optional “from” clause can be used to specify a set of values for a defining column. For example, if table Primes (Figure 1) has a column number containing the prime numbers less than 1000, the following statement would insert into Squares the primes between ten and fifty and their squares (unless they were already in the table):

fetch squares(base=p.number)
from primes p
where (p.number > 10 and p.number <50)

Within the fetch statement, a defined column can be assigned a single value, a conjunction, or a disjunction. For example, the following table would augment squares with the squares of the numbers from one to five:

fetch squares(base=1|2|3|4|5)

The following statement would add no entries to squares:
fetch squares(base=1&2)

since no value for square is associated with base values of both one and two. A conjunction that could augment Squares is:

fetch squares(base=-2&2)

since there is a value for square (4) that is associated with both base values.

3.3 Virtual and Physical Tables

We use the term virtual table to describe a table whose contents are computed in a lazy fashion. Every virtual table must have at least one defining column. The term physical table describes ordinary tables, whose contents are created with the “insert” instruction.

3.4 Selectp and Selectv
While the user is not permitted to know what information is in the relational database underlying the virtual tables, it is useful for the system to be able to do this, which it does via the selectp statement, which performs the corresponding select query on the underlying physical database. In contrast, the selectv statement is used to query the virtual database. Each selectv statement is translated into one or more fetch statements, followed by a selectp statement. For example, consider the following statement:

selectv s.square
from squares s, primes p
where s.base = p.number
and p.number < 100

It is converted into the following sequence:

fetch squares(base=p.number)
from primes p
where p.number < 100

selectp s.square
from squares s, primes p
where s.base = p.number
and p.number < 100

The selectp statements are interpreted by the underlying RDBMS. The next section describes the algorithms for converting selectv statements into fetch and selectp statements.

4. ALGORITHMS

This section describes how selectv statements are processed. When all referenced tables are physical, the semantics are the same as in SQL, and the actual table is queried. When virtual tables are involved, they must be converted into fetch and selectp statements, which is done by the following routines:

1. transform: top­level routine, which calls the below procedures and outputs required fetch statements (Figure 3).

2. merge: recognize a conjunction idiom, possibly outputting a fetch statement (Figure 4).

3. findBound: try to find a bound on a defining column of a virtual table appearing in the select statement; may call itself recursively (Figure 6).

4. refDependences: help construct fetch statements, adding references to tables upon which the current table depends; may call itself recursively (Figure 5).
5. Example: The World-Wide Web

This section describes a Just-In-Time Database representing the Web. First, we describe the schema; then, we provide an example of its use.

5.1 Background

All of its non-leaf nodes are written in hypertext markup language (HTML), which includes tags and attributes to specify intra-document structure, such as a page’s logical structure or how portions of it should be visually rendered. (Leaf nodes may be in HTML or other formats, such as Postscript.) HTML can also express inter-document structure through labeled hyperlinks relating one page to another. Each page is addressed through one or more uniform resource locators (URLs), which are themselves structured. This abundance of structure has been underutilized because of the absence of a unifying interface to the different types of structural information. Just-In-Time Databases address this problem by providing a relational database interface to the Web, allowing the user to query the Web in SQL, taking full advantage of its many types of structural information.

5.2 Schema

Relations are divided into four categories: (1) basic relations, (2) tag and attribute relations, (3) relations built on tags, and (4) relations for second­hand information.
5.2.1 Basic Relations

In order to provide useful information about the Web, it is necessary that strings, URLs, and Web pages can be represented. The valstring relation, shown in Figure 7 is used to associate an integer, value_id, with a string, textvalue; the integer is used in other tables to refer to the string. The column textvalue is a defining column. If a new textvalue is given, a new line is added to the table, with a new integer and the given textvalue.

The following relations all depend on valstring:

1. urls, which describes the set of URLs representing the same page

2. page, which represents information corresponding to a single page

3. parse, which represents the components of a URL

The urls relation, also shown in Figure 7, is used to map one or more value_ids representing URL strings to a unique url_id. If there were a one­to­one correspondence between URL strings and url ids, it would not be needed, but multiple URL strings can reference the same page. For example, both “www.ai.mit.edu” and “www.ai.mit.edu/ index.html” reference the same document, so they are

Procedure transform(selectStatement)

1. Initialization

(a) Let unboundedTables be the set of table aliases in selectStatement.

(b) Let whereDef be the WHERE clause in selectStatement.

(c) Let selectionTable by an empty hash table indexed on table aliases.

(d) Let orderedKeys be an empty vector.

(e) Let remainingTables be an empty vector.

2. Call merge(selectStatement, unboundedTables)

3. Set remainingTables to unboundedTables
4. For each table alias currentTableAlias in unboundedTables, call
findBound(currentTable, unboundedTables, fetchClauses, whereDef)

5. Branch point on the value of |unboundedTables|:

(a) |remainingTables|, fail

(b) > 0, go to step 3

(c) else, execute completion code:

i. For each alias currentAlias in orderedKeys corresponding to a virtual table

A. Let fetchString = “FETCH ”

B. Let tablesString = “”

C. Let clausesString = “ WHERE (1=1) ”

D. Let dependences be the empty set

E. For each tuple [currentAlias, LHSstring, op, RHSstring, tablesReferenced] in selectionTable where LHSstring (the empty string

1. Append to fetchString: LHSstring + op + RHSstring

2. Add the elements of tablesReferenced to dependences

3. Let processed be the set containing currentAlias

4. Call refDependences(currentAlias, selectionTable, dependences, tablesString, clausesString, processed)

5. Output clause: fetchString + “) FROM ” + tablesString + clausesString

ii. Return success

Figure 3: Pseudocode for transform. Given a selectStatement, transform returns a set of clauses or fails. Code to handle simple syntactic items, such as commas, has been omitted.

Procedure merge(selectStatement, unboundedTables)

Look for “where” clauses of the form:

t1.col1 = t2.col1 and t1.col2 = exp1 and t2.col2 = exp2

where t1 and t2 are different instantiations of the same table T. If found, remove t1 and t2 from unboundedTables and execute:

fetch T(col2 = (exp1 & exp2))

Figure 4: Pseudocode for merge
Procedure refDependences(topAlias, selectionTable, tablesReferenced, tablesString, clausesString, processed)

1. Let newDependences be the empty set

2. For each alias predAlias in tablesReferenced and selectionTable but not in processed

(a) Put predAlias in processed
(b)
Append to tablesString: TableType(currentTableAlias) + “ ” + currentTableAlias

i.
Append to tablesString: TableType(predAlias) + “ ” + predAlias

ii.
For each tuple [currentTableAlias, LHSstring, operator, RHSstring, currentTablesReferenced] corresponding to predAlias in selectionTable where currentTablesReferenced does not contain topAlias
A.
Append to clausesString: “ and ” + LHSstring + “ ”+ operator + “ ” + RHSstring

B.
Add the elements of currentTablesReferenced to the set newDependences

3. If |newDependences| > 0, call refDependences(topAlias, selectionTable, tablesReferenced, tablesString, clausesString, processed)

Figure 5: Pseudocode for refDependences. The procedure adds table definitions and clauses of referenced tables to the current fetch statement.

Procedure findBound(currentTableAlias, unboundedTables, fetchClauses, whereDef)

Branch point on the type of whereDef
1. disjunction (clause1 or clause2)

(a) Let returnValue1 be the result of
findBound(currentTableAlias, unboundedTables, fetchClauses, clause1)

(b) If returnValue = false, return false

(c) Let returnValue2 be the result of
findBound(currentTableAlias, unboundedTables, fetchClauses, clause2)

(d) Merge any new clauses of fetchClauses with the same left­hand side to create fetch disjunctions

(e) Return returnValue2

2. conjunction (clause1 and clause2)

(a) Let returnValue1 be findBound(currentTableAlias, unboundedTables, fetchClauses, clause1)

(b) Let returnValue2 be findBound(currentTableAlias, unboundedTables, fetchClauses, clause2)

(c) Merge any new clauses of fetchClauses with the same left­hand side, to create fetch conjunctions

(d) Return (returnValue1 V returnValue2)

3. negation (e.g, “tab.col (7”), return false

4. relational expression (LHS operator RHS)

(a) Let currentTableType be the type of currentTableAlias

(b) If (currentTableType is a virtual table and (operator is not “=” or “LIKE”))
or (LHS is not of the form currentTableAlias.col)
or (col is not a defining column for currentTableType)),
return false

(c) Let referencedTables be the tables referenced in RHS

(d) If |referencedTables (unboundedTables| (0,
return false

(e) Let newClause be the tuple
[currentTableAlias, ToString(LHS), operator, ToString(RHS), tablesReferenced]

(f) Add newClauses to fetchClauses

(g) Remove currentTableAlias from unboundedTables

(h) Return true

Figure 6: Pseudocode for findBound. Returns true if an item was removed from unboundedTables, false otherwise.
valstring

urls

page

colname
type

colname
type

colname
type

value_id
int

url_id
int

url_id*
int

textvalue*
text

value_id*
int

contents*
text

variant
int

bytes
int

md5
char(32)

when
datetime

Figure 7: The valstring, urls, and page relations. Asterisks indicate defining columns.

parse
schema

parse
relation

colname
coltype

url_value_id
component
value
depth

url_value_id*
int

950
“host”
“www.ai.mit.edu”

component
char(5)

950
“port”
80

value
varchar(255)

950
“path”
“index.html”
1

depth
int

950
“path”
“people”
2

950
“ref”
“t”

Figure 8: The parse relation and an example of its contents for the url_id corresponding to “www.ai.mit.edu/people/index.html#t”

assigned the same url_id, with different variant numbers. Strictly speaking, there is no way to tell if two URLs reference the same file or merely two copies of a file. We use the heuristic that two URLs reference the same page and should have the same url_id if they retrieve identical contents and the URLs have the same host machine. Because the information known about URLs can change, it is possible for the url_id associated with a string to change, in which case all url_ids in system and user tables are changed correspondingly. The value_id column is a defining column. If a new value_id is given, a new line is created with a unique url_id and a variant value of zero.

The page relation (Figure 7) contains information obtained the last time a Web page was retrieved, including the text of a page, its size, a time stamp, and the results of a Message Digest 5 (MD5) hash function [11] on the page's text, providing a quick way to tell if two pages contain the same text. The valid field encodes the results of the last attempted retrieval of the page: “y” if it was successfully retrieved or “n” if it could not be retrieved. The columns url_id and contents are defining columns. If a url_id is given, the system can fetch the associated page from the

Web and fill in the other fields. If a wildcard expression is given for contents, such as “%VLDB%”, the system can ask a search service, such as AltaVista (www.alta-vista.digital.com), to return all pages (that it knows of) containing the substring. These are then added to the table.
The parse relation, defined and illustrated in Figure 8, encodes a parsed version of a URL string. This is useful for determining if two URLs are on the same host machine or if one is above the other in the directory hierarchy. The component field contains “host”, “port”, “path”, or “ref”, and the value field shows the associated value. For the “path” component, the depth within the file hierarchy is also indicated, starting at the file name. Note that one url_id can have multiple parses, if multiple URLs correspond to that page. The following transcript demonstrates the use of these basic relations.

What value_id corresponds to the string www.ai.mit.edu/index.html?
select value_id from valstring where textvalue=“www.ai.mit.edu/index.html”

value_id

950

What url_id corresponds to the URL represented as “www.ai.mit.edu/index.html”?
select url_id from urls where value_id = 950

url_id

817

Show all the known url_ids for this page.
select * from urls where url_id = 817

url_id
value_id
variant

817
950
1

817
1140
2

What strings correspond to these url_ids?
select textvalue from valstring v, urls u
where u.url_id = 817 and v.value_id = u.value_id

textvalue

“www.ai.mit.edu”

“www.ai.mit.edu/index.html”

How many bytes long is the page?
select bytes from page where url_id = 817

bytes

8116

What is the host component of the URL corresponding to value_id 950?
select value from parse where url_value_id = 950 and component = “host”

value

“www.ai.mit.edu”

tag

att

colname
type

colname
type

url_id*
int

tag_id*
int

tag_id
int

name
char(15)

name
char(15)

value_id
int

startOffset
int

endOffset
int

Figure 9: The tag and att (attribute) relations

5.2.2 Tag and Attribute Relations

Hypertext consists of text annotated with tags and attributes. Hence, it is necessary that our system can represent tag and attribute information, which it does through the tag and att relations, shown in Figure 9.

The tag relation contains one line for each tag or set of paired tags encountered. (Single tags include “<hr>” (horizontal rule); paired tags include “<title>” and “</title>”.) Information stored includes the url_id, tag name, the start and end character offsets of the tag within the document, and a unique tag_id, which is used to reference attributes. The url_id column is a defining column. Given a url_id, the system can retrieve a page and parse it, filling in the tag table (and the att table as a side effect).

The att relation contains one line for each attribute name and value in a document. The name is a short string and the value an index into valstring. We consider the anchor text enclosed by a pair of tags to be the value of the attribute “anchor”. The following transcript illustrates the use of the tag and att relations:

What tags occur within the first 100 characters on “www.mit.edu”?
select t.name, t.tag_id from tag t, urls u, valstring v where .textvalue = “www.mit.edu” and u.value_id = v.value_id and t.url_id = u.url_id and startOffset < 100

name
tag_id

!DOCTYPE
1080

HTML
1081

HEAD
1082

TITLE
1083

What are the attributes of the “TITLE” tag?
select * from att where tag_id = 1083

tag_id
name
value_id

1083
anchor
1105

What is the text associated with the “TITLE” tag?
select textvalue from valstring where value_id = 1105

textvalue

“SIPB WWW Server Home Page”

5.2.3 Relations Built on Tags

Information about the structure of headers and lists on a page and hyperlinks across pages can be inferred from the information in the tag and att tables, but for greater convenience we provide the user with specialized tables header, list, and link, shown in Figures Figure 10

 REF _Ref427594214 Figure 11.

Through the header table, we keep track of the levels of headings at each point of change. HTML supports six levels of headings (H1–H6). The struct column consists of an array of six bytes, each of which corresponds to one level of heading. At the beginning of a page, all six bytes are initialized to zero. Whenever a <Hn> tag is encountered, byte (n-1) is incremented and all bytes with higher offsets are clear. The ord element is an ordinal number associated with each change of header structure. The defining column is url_id, since, given a url_id, a page can be fetched and parsed. As a side effect of computing the header relation, the tag and att relations are also computed.

The list relation keeps track of the list structure of a document. There are four types of lists supported by HTML: ordered lists, unordered lists, directories, and menus. These are not differentiated among in the list relation (but are in the tag relation). Lists can be arbitrarily nested in HTML; the list relation keeps track of up to six levels of nesting of lists. As with header, the only defining column is url_id. The details [15] are similar to, but not identical to, those for the header relationship.

header

list

colname
type

colname
type

url_id*
int

url_id
int

struct
binary(6)

struct
binary(6)

ord
int

ord
int

offset
int

offset
int

Figure 10: The header and list relations

 link

colname
type

source_url_id*
int

anchor_value_id*
int

dest_url_id*
int

hstruct
binary(6)

lstruct
binary(6)

Figure 11: The link relation
The link relation contains one line for each hyperlink encountered, storing the source_url_id, anchor text value_id, and destination url_id. For example, there is a hyperlink from the MIT AI Lab home page with anchor text “LCS” to the MIT Laboratory for Computer Science. The corresponding url_ids for the source (www.ai.mit.edu) and destination (www.lcs.mit.edu) URLs and the value_id for the anchor text (“LCS”) appear as one line in the relation, as do the list and header structures at which the hyperlink occurs. The source_url_id column is a defining column because, given a URL, the system can retrieve the corresponding page, parse it, and determine the other fields. Less obviously, anchor_value_id and dest_url_id are also defining columns. This is done by having our system access AltaVista, which allows queries for pages that contain a given string as either anchor text or as the target of a hyperlink, although it does not (and could not) guarantee that it will return complete set. The system then verifies that the hyperlink still exists before adding it to the link relation.
5.2.4 Relations for second­hand information

In addition to direct information about the text and hyperlinks of Web pages, indirect information can be obtained from Web tools. It is important however to distinguish between verified and second­hand information, hence the rcontains table, for reported contents of pages, and the rlink table, for reported links. These are illustrated in Figure 12.

The rcontains relation indicates the claim by the search engine shown in the helper column that a certain page contains a certain piece of text. The value of the num column (by default 10) determines the maximum number of such references added.

The rlink relation contains search engine claims about hyperlinks among pages. Because of the functionality provided by the public search engines, the source_url_id field will always have a non­null value, but exactly one of anchor and dest_url_id will be null. In other words, a line can indicate the reported source and destination of a hyperlink, or it can indicate the reported source and anchor text of a hyperlink. The missing information, assuming the reported link actually exists, can be extracted from the link relation. As with rcontains, the helper and num fields are used to specify the search engine and maximum number of lines added.

5.2.5 Bookkeeping

For each table, the system adds a column, compute_id, to keep track of what fetch statement caused each line to be inserted and when the fetch was performed [15]. This provides a hook for the user to ask questions about how fresh data is and how the Web has changed.

rcontains

rlink

colname
coltype

colname
coltype

url_id
int

source_url_id
int

value
varchar(255)

anchor
varchar(255)

helper
char(16)

dest_url_id
int

num
int

helper
char(16)

num
char(16)

Figure 12: The rcontains and rlink relations
5.3 Application: A Recommender System

One useful class of information retrieval applications is recommender systems [33], where a program recommends new Web pages (or some other resource) judged likely to be of interest to a user, based on the user's initial set of liked pages P. A standard technique for recommender systems is extracting keywords that appear on the initial pages and returning pages that contain these keywords. Note that this technique is based purely on the text of a page, independent of any inter- or intra-document structure.

Another technique for making recommendations is collaborative filtering [13], where pages are recommended that were liked by other people who liked P. This is based on the assumption that items thought valuable/similar by one user are likely to by another user. As collaborative filtering is currently practiced, users explicitly rate pages to indicate their recommendations. We can think of the act of creating hyperlinks to a page as being an implicit recommendation. In other words, if a person links to pages Q and R, we can guess that people who like Q may like R, especially if the links to Q and R appear near each other on the referencing page (such as within the same list). This makes use of intra-document structural information. One can use the following algorithm to find pages similar to P1 and P2:
1. Generate a list of pages Parent that reference P1 and P2.

2. Generate a list of pages Result that are pointed to by the pages in Parent (i.e., are siblings of P1 and P2).

3. List the pages in Results most frequently referenced by elements of Parent.

Figure 13 shows a sample run of this algorithm. Figure 14 shows the implementation.

Some improvements to the application that have been implemented and described elsewhere [15] are:
1. Only return target pages that include a keyword specified by the user.

2. Return the names of hosts frequently containing referenced pages.

3. Only return target pages that point to one or both of P1 and P2 .

4. Only follow links that appear in the same list and under the same header as the links to P1 and P2 .

Preliminary evaluation [15] suggests that the last optimization yields results superior in some ways to the best text­based Web recommender system. Note that these heuristics simultaneously take advantage of inter-document, intra-document, and intra-URL structure.

Elsewhere, we discuss a home page finder, a moved page finder, and a technique for finding pages on given topics [14]

 REF _Ref412794408 \n [15].

v.vcvalue
score

www.nasa.gov/
13

www.nsf.gov/
12

www.fcc.gov/
5

www.nih.gov/
5

daac.gsfc.nasa.gov/
5

www.whitehouse.gov/
4

www.cdc.gov/
4

www.doc.gov/
4

www.doe.gov/
4

www.ed.gov/
4

Figure 13: First ten results of running SimPagesBasic (Figure 14) with the url_ids corresponding to “www.nsf.gov” (National Science Foundation) and “www.nasa.gov” (National Aeronautics and Space Administration).

6. Conclusions

6.1 Discussion

Just-In-Time Databases allow the user read access to a distributed semi-structured data set as though it were in a single relational database. This enables the use of SQL in querying the World-Wide Web, whose abundant structure has been underutilized because of the difficulty in cleanly accessing it. The representation supports distinguishing among data returned by different search engines (or other sources), information that was true in the past, and information that was recently verified. This provides a basis for powerful Web applications.

6.2 Related Work

An extractor developed within the TSIMMIS project uses user­specified wrappers to convert web pages into database objects, which can then be queried [3]. Specifically, hypertext pages are treated as text, from which site­specific information (such as a table of weather information) is extracted in the form of a database object. The Information Manifold provides a uniform query interface to structured information sources, such as databases, on the Web [5]. Both of these systems differ from our system, where each page is converted into a set of database relations according to the same schema.

SimPagesBasic(page1id, page2id, threshold)

// Create temporary data structures

create table parent(url_id int)

create table results(url_id int, score int)

// Insert into parent the pages that reportedly link
// to both pages that we care about

insert into parent (url_id)

select distinct r1.source_url_id
from rlink r1, rlink r2

where r1.source_url_id = r2.source_url_id and r1.dest_url_id = page1id
and r2.dest_url_id = page2id

// Store the pages pointed to by the parent pages,

// along with a count of the number of links

insert into results (url_id, score)

select l.dest_url_id, COUNT(*)

from link l, parent p

where l.source_url_id = p.url_id

group by l.dest_url_id

// Show the URLs of pages most often pointed to

// and the number of links to them

select v.textvalue, count(*)

from link l, parent p, valstring v, urls u

where l.source_url_id=p.url_id and l.dest_url_id = u.url_id and u.value_id=v.value_id

group by v.textvalue
having count(*) (threshold
order by count(*) desc

Figure 14: Code for SimPagesBasic

This work is influenced by WebSQL, a language that allows queries about hyperlink paths among Web pages, with limited access to the text and internal structure of pages and URLs [8]

 REF _Ref412856982 \n * MERGEFORMAT [7]. In the default configuration, hyperlinks are divided into three categories, internal links (within a page), local links (within a site), and global links. It is also possible to define new link types based on anchor text; for example, links with anchor text “next”. All of these facilities can be implemented in our system, although WebSQL’s syntax is more concise. While it is possible to access a region of a document based on text delimiters in WebSQL, one cannot do so on the basis of structure. Some queries we can express but not expressible in WebSQL are:
1. How many lists appear on a page?

2. What is the second item of each list?

3. Do any headings on a page consist of the same text as the title?

W3QL is another language for accessing the web as a database, treating web pages as the fundamental units [4]. Information one can obtain about web pages includes:

1. The hyperlink structure connecting web pages

2. The title, contents, and links on a page

3. Whether they are indices (“forms”) and how to access them

For example, it is possible to request that a specific value be entered into a form and to follow all links that are returned, giving the user the titles of the pages. It is not possible for the user to specify forms in our system (or in WebSQL), access to a few search engines being hardcoded. Access to the internal structure of a page is more restricted than with our system. In W3QL, one cannot specify all hyperlinks originating within a list, for example.

An additional way in which Just-In-Time Databases differ from all of the other systems is in providing a data model guaranteeing that data is saved from one query to the next and (consequently) containing information about the time at which data was retrieved or interpreted. Because the data is written to a SQL database, it can be accessed by other applications. Another way our system is unique is in providing equal access to all tags and attributes, unlike WebSQL and W3QL, which can only refer to certain attributes of links and provide no access to attributes of other tags.

6.3 Future Work

The current system is a prototype. Just-In-Time Databases would be much more efficient and robust if it were integrated with a SQL database server. Currently, no guarantees are made as to atomicity, consistency, isolation, and durability. Compilation of virtual queries would be more efficient than the current interpretation, as would be exposing virtual queries to optimization. We would also like to be able to include virtual table references within SQL procedures. Opportunities exist for more efficient memory usage. For example, text within nested tags is repeated in the database, instead of being referred to indirectly. Active database technology could be used to update pages in the database as they expire. We would also like to provide our system with direct access to a search engine's database to minimize data transfer delays.

7. ACKNOWLEDGMENTS

8. REFERENCES

[1] Gustavo O. Arocena, Alberto O. Mendelzon, and George A. Mihaila. Applications of a Web query language. In Proceedings of the Sixth International World Wide Web Conference, Santa Cruz, CA, April 1997.

[2] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A Query Language and Optimization Techniques for Unstructured Data in Proceedings of the 1996 ACM SIGMOD international conference on management of data.

[3] J. Hammer, H. Garcia­Molina, J. Cho, R. Aranha, and A. Crespo. Extracting semistructured information from the Web. In Proceedings of the Workshop on Management of Semistructured Data, Tucson, Arizona, May 1997.

[4] David Knopnicki and Oded Shmueli. Information gathering in the World­Wide Web: The W3QL query language and the W3QS system. Available from “www.cs.technion.ac.il/~konop/w3qs.html”, 1997.

[5] Alon Y. Levy, Anand Rajaraman , Joann J. Ordille , Query answering algorithms for information agents. Proceedings of the AAAI Thirteenth National Conference on Artificial Intelligence, 1996.

[6] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer Widom. Lore: A Database Management System for Semistructured Data. SIGMOD Record, 26(3):54-66, September 1997.

[7] Alberto Mendelzon, George Mihaila, and Tova Milo. Querying the world wide web. In Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems, Miami, FL, 1996.

[8] George A. Mihaila. WebSQL — an SQL­like query language for the world wide web. Master's thesis, University of Toronto, 1996.

[9] Dave Raggett. Html 3.2 reference specification. World­Wide Web Consortium technical report, January 1997.

[10] Paul Resnick and Hal R. Varian. Recommender systems (introduction to special section). Communications of the ACM, 40(3):56–58, March 1997.

[11] Ronald Rivest. The MD5 message­digest algorithm. Network Working Group Request for Comments: 1321, April 1992.

[12] Jacques Savoy. Citation schemes in hypertext information retrieval. In Maristella Agosti and Alan F. Smeaton, editors, Information Retrieval and Hypertext, pages 99–120. Kluwer Academic Press, 1996.

[13] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for automating “word of mouth”. In Computer­Human Interaction (CHI), 1995.

[14] Ellen Spertus. ParaSite: Mining structural information on the web. In The Sixth International World Wide Web Conference, April 1997.

[15] Ellen Spertus. ParaSite: Mining the Structural Information on the World-Wide Web. PhD Thesis, Department of EECS, MIT, Cambridge, MA, February 1998.

